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Abstract-A generalized theory of plane stress is applied to the particular problem of a semi­
infinite, isotropicaJly elastic sheet of uniform thickness with a sinusoidally varying normal edge
load (parallel to the plane of the sheet). Approximate three-dimensional corrections to the
elementary two-dimensional plane stress solution are obtained which are roughly proportional
to Poisson's ratio and which result in a maximum stress which is 10-20% larger for Poisson's
ratio varying from 0.3 to 0.5.

I. INTRODUCTION

The purpose of this paper is to present an application of a theory of generalized plane
stress which was first proposed by Reissner in 1943 [I] and was recently rederived in
somewhat more general form [2]. The particular problem presented here was first con­
sidered by the author in an unpublished Master's thesis [3] written under the direction
of Professor Reissner and completed in February 1946. It is most fitting for the current
version of the problem to appear in a collection honoring Professor Reissner's sev­
entieth anniversary.

The problem is that of a semi-infinite elastic sheet or layer of uniform thickness with
a normal edge load, parallel to the plane of the sheet, which varies sinusoidally along
the edge of the sheet but is uniform across the thickness (see Fig. I). The elementary
two-dimensional plane stress solution of the problem for an isotropic layer is indepen­
dent of Poisson's ratio v and neglects totally the transverse shear and normal stresses.
The three-dimensional corrections obtained here show that the elementary theory is
indeed valid for practical purposes for small thickness to load wavelength ratios but
that, when the load wavelength is comparable to the thickness, the maximum stress
at the edge of the sheet may be up to 20% larger (for v = i) than the value given by
the elementary theory. Also, the transverse normal and shear stresses may be quite
significant.

The theory applied here assumes that stresses vary across the plate thickness in the
simplest way compatible with the equilibrium equations and this assumed thickness
variation becomes less accurate as the load wavelength becomes significantly smaller
than the sheet thickness. Otherwise, there would be a transition to plane strain theory.
As the load wavelength approaches zero, the limiting value of the transverse normal
stress obtained here exceeds the plane strain value by 31%, showing that the present
theory is not quantitatively correct at such extremes. However, it does possess the
right qualitative features, as all other stress quantities do approach the values given
by plane strain theory in the middle portion of the layer..

2. EQUATIONS FOR GENERALIZED PLANE STRESS

The theory used here assumes that the three-dimensional stresses of linear elasticity
theory have the approximate form,

(I)

)
(Sx, Sy) ,

(Txz , Tyz = 2c Z (z),
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(2)
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where
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Fig. I. Semi-infinite elastic sheet of thickness 2c with a sinusoidal normal edge load. (1,. =

(10 cos ax, a = 2,"11. .

Z(z) = _ c
2 (I _Z2)2

4 c2 '
Z'(z) = c' E.(I - Z2), Z"(z) = I _ 3z:.

c c2 c
(3)

The form assumed is consistent with the three-dimensional equilibrium equations and
with the traction conditions Tx~ = Ty~ = C7z = 0 on the faces, z = ±c, of the sheet.
The form also corresponds to the assumption that in-plane components of stress (as
well as edge loads) are symmetric with respect to the middle plane, z = O. The stress
quantities, N xx , ... , T, are functions of the in-plane coordinates x, y. EquiJibrium
equations for the stress quantities and their relation to weighted displacement com­
ponent averages over the sheet thickness are obtained from a variational principle in
[2]. A tenth-order system of differential equations is found which may be reduced to
the following three uncoupled partial differential equations for three stress functions,
<p,~, n:

V4 <p = 0, Au c2 v2n - n = 0,

A I c4 V4 ~ + A2 c2 V2~ + ~ = o.
(4a,b)

(5)

In this, V2 denotes the two-dimensional Laplace operator and the coefficients Ai are
dimensionless functions of the elastic constants, which are determined in [2] for a
homogeneous transversely isotropic layer. Here, only the completely isotropic case is
considered. The coefficients are then given by

2 2(I - 69v2/70) 4
Ao = 21' AI = 63 I _ v2 ,A2 == - 21' (6)

Only one coefficient depends upon Poisson's ratio v and even it may be treated as
independent of v for practical purposes. In this case ~, as well as n, will depend upon
v only through the boundary conditions.

Once eqns (4) and (5) have been solved, subject to appropriate boundary conditions,
the various stress quantities are given in terms of two auxiliary functions,

2v
K = tn - - c2 .1.

T 15 '1"

== 3..[(2 _ ) .1. _ (1 - (69/70)v
2

) 2V2.I.]
X 21 v 'I' 3(1 + v) C 'I'

by the following formulas:

N xx == K.yy , N yy = K,xx, N xy == - K,xy,

V V2
6(1 + v) <p,

(7)

(8)

(9)
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R xx = I\J - c2 X.yy + (4c 2/21) D.xy ,

R.v)' = I\J - c2 X.xx - (4c 2/21) Oxy,

R xy = c2 X.x)' + (2c 2 /21) O.x...

Sx = - l\J.x - O.y, Sy = - l\J.y + O.x, T = - V2 1\J.

5

(1O)

(II)

(12)

(l3a,b,c)

Various features of the above formulas and differential equations (4) and (5) may be
pointed out. First, if one formally puts the half-thickness c = 0, then, from eqns (4b)
and (5), 0 = 0, I\J = 0, all quantities except N.u, N.I•.I ., N.r.v vanish, and K = cp is a
biharmonic function which may be identified with the Airy stress-function ofelementary
plane stress theory, so that the present theory reduces to the elementary theory. If I\J
= °and 0 == °with c "" 0, then the formulas yield expressions for R xx , ... , R xy in
terms of cp from the last term in eqn (8). These are equivalent to the correction terms
given by an exact solution of three-dimensional elasticity theory (see Love [4], Section
145, or Timoshenko and Goodier [5], Section 84). However, this solution implies that
a parabolic variation of CJ'x, CJ'y, Txy in the thickness coordinate z holds throughout the
layer, even at the edges. The terms in I\J and 0 represent edge-zone corrections which
are important only over distances, into the interior of a sheet, of the order of the
thickness 2c, while terms in cp represent the interior state of stress. The function I\J
represents transverse normal stress and shear stress effects, while 0, as is shown in
[2], represents transverse shear effects only, or the shearing action in layers parallel
to the plane of the sheet.

3. SEMI·INFINITE SHEET. SINUSOIDAL LOAD

Consider a semi-infinite sheet occupying the region, y ~ 0, - c :s z :s c (see Fig.
I), with the faces z = ± c free of stress and with edge stresses given, for - 00 < x <
OC, by

CJ'y(X, 0, z) = CJ'o cos(ax), Txy(X. 0, z) = 0, Txz(X, 0, z) = ° (l4a,b,c)

where CJ'o is a constant and a = 2-rr1l. As y - oc, all stress quantities are to approach
zero.

An approximate solution of this three-dimensional problem is given by the formulas
of the previous section if, at the edge y = 0, the following five conditions hold (with
No = 2cCJ'o):

Nyy(x, 0) = No cos(CV'), Nxy(x, 0) = 0,

Rn·(x, O) = 0, Rxy(x,O) = 0, Sy(x,O) = 0.

(l5a,b)

(l6a,b,c)

Again, all quantities are to vanish at y = 00.

From the form of the boundary conditions and the formulas for the stress quantities,
one may anticipate that the functions cp and I\J are proportional to cos ax and the function
o to sin ax. Substituting

cp(X, y) = fey) cos ax (17)

into eqn (4a) yields a fourth-order ordinary differential for fey) with a general solution,

(18)

The conditions at y = 00 require that C3 = C4 = O. Anticipating subsequent formulas,
it is convenient to write

cp(x, y) = - (No/a 2)[1 + C. + (I + C 2)ay] e-CI.Y cos ax. (19)
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If C. and C2 are set equal to zero in eqn (19), one has the Airy stress-function of
elementary plane stress which corresponds to the stress quantities,

N~O) = N o( I + ay)e - <I)' cos ax, N~~) = Noo:ye - <1.1' cos ax.

(20)

(2Ia,b)

The above formulas (with all other quantities equal to zero) also correspond to the
exact solution of the problem when Poisson's ratio v vanishes.

The differential operator in eqn (5) for 1/1 turns out to have complex-valued factors.
The equation may be written in the form,

(5')

where superposed bars denote complex conjugates and where

(22)

The solution of eqn (22) may be written as

(23)

With 1/1 proportional to cos ax, the general solution of eqn (5') which vanishes at y =
00 then takes the form,

(24)

where

Finally, the appropriate solution of eqn (4b), with A o = 2/21, is given by

O(X, y) = NoCo e--YY sin ax,

where

(C')')2 = (co:? + 21/2.

(25)

(26)

(27)

Substituting the above formulas for Ill, 1/1 and n into eqns (7)-(13) results in the
following expressions for the various stress quantities:

NxxlNo = HI - C1 + 2C2 - (l + C2 ) ay] e-<lY

- '(2vI15)[(c~)2 Be-I!Y + (cJJ)2 B e-'!JY]}cos ax, (28)

Nyy/No = HI + c. + (1 + C2)ay]e-ay

+ (2v/15)(co:)2(Be - p'y + B e- ~Y)}cos ax, (29)

Nxy/No = {C1 - C2 + (l + C2)o:y)e-<lY

+ (2v/15)co: (c~e -I!y + c~ Be - ~Y)} sin ax, (30)
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RxxlNo = {[J - (cl3)2 M)Be-~Y + [J - (c~? M)Be-1!y

+ v(ea)2 (1 + C2)e-uy _ 4c2a'Y coe-'Y),} cos ax, (31)
3(1 + v) 21

RyylNo = {[I + (ea)2M]Be- P)' + 1I + (ea)2M]Be- lJY

v(ea)2 (I C) -a,· 4e2a'Y C -'YY} (32)
- 3(1 + v) + 2 e . + 21 0 e COS ax,

eSxlNo = [ca(Be-j3y + Be-J;y) + C'Y Coe-'YY] sin ax,

eSylNo = [cI3Be -~y + e~Be -~Y + ea Coe -'YY] cos ax,

e2TINo = [-~2Be-~Y - jt2Be-jJy] cos ax,

where

2 [ 1 - (69nO)v2 2] 2v 1 - v
M = 21 2 - v - 3(1 + v) ~ = iT +~

= :1 - i (I ~ v) ~ (10 + 5(1 ~ V 2»)'

(33)

(34)

(35)

(36)

(37)

Applying the boundary conditions, eqns (15) and (16), to the above expressions, one
obtains the following five linear algebraic equations for the integration constants, Co,
C., C2 • B, B:

2v 2 -C. + 15 (ea) (B + B) = 0, (38)

2v --
C. - C2 + is ea (e13B + e~B) = 0, (39)

4e2 v(ea)2 2 2- - _ v(ea)221 a'Y Co - 3(1 + v) C 2 + [I + (ea) M]B + [I + (ea) M]B - 3(1 + v)' (40)

2e2 2 2 v(ea)2 2 2 -- v(ea)2
21 ('Y + a )Co - 3(1 + v) C2 + e a~MI3 + e.a~MB = 3(1 + v)' (41)

eaCo + e~B + e~B = O. (42)

By decomposing complex-valued quantities into real and imaginary parts, writing

~ = 13, + i ~i' B = B, + i B i , M = M, + i M i , (43)

the above equations may be reduced to equations for real-valued quantities and solved
numerically on a computer for various values of ea = 2'ffcll and v. Table 1 lists some
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TABLE 1

v = .5

co cS cS
i

cy Co C1 C2 2B 2B
ir r

.5 2.1180 1.1182 3.2787 .02266 -.00032 -.00070 .01934 .04676

1.0 2.2557 1.0499 3.3912 .07096 -.00314 -.00787 .04715 .16889

2.0 2.7772 .8528 3.8079 .15511 -.00978 -.05115 .03669 .48328

3.0 3.5266 .6716 4.4159 .18462 .01367 -.09710 -.02279 .70506

5.0 5.3089 .4461 5.9582 .18524 .16685 -.14188 -.10011 .88480

10.0 10.1509 .2333 10.5119 .17347 .99016 -.]6633 -.14852 .97331

of the values obtained for v = i. The results, substituted into eqns (28)-(36), determine
the various stress quantities. Since all such quantities decay exponentially as y in­
creases, maximum values of the quantities not prescribed in the boundary conditions
occur at y = O. After some algebraic reductions, using the relations (22), (25) and (38)­
(42), one may deduce the following formulas:

e2T(0,0)/No = - (~2B + jj:2B) = - 2[Re(~2)B, - Im(~2)B;], (44)

NxAO,O)/No = I + 2C2 + (2v/15)c2T(0, O)/No, (45)

RxAO,O)/No = 2(1 + v)B, + (2v/2l)e2T(0, O)/No, (46)

eSA'Tf/2a,O)/No = 2eaB, + qCo. (47)

Approximations for the maximum values of the three-dimensional stresses may be
obtained from eqns (I) and (2) taking (3) into account. One has

max ax == aAO, 0, 0) = [NxAO.O) + RxAO, 0)]/(2c) , (48)

max'Txz = 'Txz('Tf/(2a), 0, cly'3) = (2y'3/9)eSA'Tf/(2a), 0)/(2c) , (49)

max a z = az(O, 0, 0) = c2T(0, 0)/(8c). (50)

Also, the minimum edge value of ax occurs at z = ± c and is given by

min ax = aAO, 0, c) = [NxAO, O) - 2RxAO,0)]/(2c). (51)

.8

1.2

With No = 2c ao, the ratios, max ax/ao and min ax/ao, are graphed in Fig. 2 for

V=.5
~--... max C1"x/Uo

_::::::::==========-=-
1.0 14i=~----_--------;"::=-::';-=:":=::=::=-=-=::;====::=;':;=-~--~-=~=!i=!I_-la_iii_II

----:.--~in 0", /0"0
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ca=21TC/ J

Fig. 2. Maximum and minimum values ofax/ao at the edge. )' = o.
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Fig. 3. Maximum values of cr.tcro and Txz/crO at the edge, y = O. ---- calculated, -'-'­

co!\iectured.

different values of vas functions of the ratio, ca = 2-rrcll. The elementary plane stress
or plane strain edge value of erx/ero is 1 and it is seen that this value is approached as
ca -+ 0 or as ca -+ 00. The greatest three-dimensional correction to the elementary
two-dimensional theory occurs for ca .... 2 or 2c11 .... 2/-rr; that is, when the wavelength
I of the load variation is comparable to the sheet thickness 2c.

Graphs of max Txz/ero and max erz/ero, which are neglected in the elementary theory,
are shown in Fig. 3. The greatest value for Txz occurs for ca .... 3, so that this correction
is important for even smaller wavelengths. The plane strain value of erz is 2vero and the
dash-dot curves in Fig. 3 show what the behavior of erz should be. As one approaches
a plane strain loading approximation, it is known that there is a very narrow zone near
the face of a thick layer where erzhas a rapid transition to zero. Evidently, the assumed
variation Z(z) does not approximate this transition closely enough in the extreme of a
very thick layer to give an accurate limiting value for erz. Limiting values of the solution
of the linear system, (38)-(42), have been obtained analytically as ca -+ 00. From these

TABLE 2

\I •• 5

ca max NINO max R INO max 0xloO min 0/00 max T laO max a zlaOxx xx xz

.5 1.0095 .03681 1.0463 .9359 .0323 .0409

1.0 1.0282 .10212 1.1303 .8240 .1108 .1648

2.0 1.0430 .15883 1.2018 .7254 .2556 .5449

3.0 1.0330 .12808 1.1611 .7768 .2875 .8519

5.0 1.0156 .06364 1.0792 .8883 .2321 1.1225

10.0 1.0043 .01787 1.0221 .9685 .1302 1.2634.
\I •• 3

ca max NINO max R INO max axlaO min 0/00 max T laO max 0/00xx xx xz

.5 1.0039 .0208 1.0247 .9623 .0289 .0280

1.0 1.0114 .0572 1.0686 .8969 .0678 .1091

2.0 1.0168 .0889 1.1057 .8391 .1475 .3428

3.0 1.0128 .0720 1.0847 .8688 .1625 .5236

5.0 1.0060 .0358 1.0418 .9343 .1297 .6797

10.0 1.0016 .0100 1.0117 .9816 .0723 .7598
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values, the result for CJ'~ is given by
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I
. 21

('~~x CJ'AO, 0, 0) = "8 VCJ'o = (1.3125)2vCJ'o. (52)

Since the value of max CJ'~, and therefore nO, 0), is clearly in error for ea > 2 or 3,
other quantities as given by eqns (44)-(47), are also probably inaccurate for en > 2,
and these portions of the graphs in Figs. 2 and 3 have been drawn as dashed curves
to indicate this. It is hoped that a further investigation will help to establish the range
of validity of the result presented here as the ratio ea increases.

As ea - 0, the constants in the system, eqns (38)-(42), all approach zero at least
as fast as (ea)2, showing that the error in the elementary plane stress solution is quad­
ratic in ca.

More extensive calculations were carried out than appear in Table 2, which list only
some representative values. Results for v = 0.2 and 0.4 fit in between those for v =
0, 0.3, 0.5. The variation in v is approximately, but not exactly, linear. Finally, the
computations were done using values of ~2 and M as defined by eqns (23) and (37).
Earlier computations [3] were done for the case v = I using the approximation for ~2

given in eqn (23) and a corresponding approximation for M. The earlier results agree,
to within three significant figures at most points, with results presented here.
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